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Number fluctuations of interacting particles 

P N Pusey 
Royal Signals and Radar Establishment, Malvern, Worn WR14 3PS, UK 

Received 21 November 1978 

Abstract. The mean-square fluctuation in the number of colloidal particles (radius -45 nm) 
in a small volume element (-8 &m3) of an aqueous dispersion was measured by photon- 
correlation laser light scattering. Both randomly distributed, non-interacting particles and 
those showing a ‘liquid-like’ spatial arrangement owing to long-range repulsive Coulombic 
interactions were studied. The magnitude of the reduced fluctuations in the latter case 
agreed with that predicted from the structure of the dispersion, which was determined 
independently from the angular dependence of the average scattered light intensity. This 
provides the first direct experimental verification of the fundamental Ornstein-Zernike 
relationship between number fluctuations and the pair distribution function g ( r )  in a system 
of interacting particles. Possible extensions of the experiment, including the measurement 
of four-particle correlations, are discussed briefly. 

1. Introduction 

One of the simplest results of the grand canonical ensemble relates fluctuations 
M = M - ( M )  in the number M of interacting particles in a fixed volume V to the 
two-particle radial distribution function g(rlZ) (see e.g. Egelstaff 1967, p 15): 

where (M), the mean occupation number of V, is given by ( M )  = pV, p is the number 
density of particles, r12 = Irl - rzl, ri being the position of particle i, and the angular 
brackets indicate ensemble averages. (This result was first obtained by Ornstein and 
Zernike (1914).) If the linear dimension of V, - V1’3, is much larger than the distance 
over which structure in g(rlz) persists, i.e. over which g(r12) - 1 is significantly different 
from 0, equation (1) becomes 

(AMz) / (M)  = 1 + p  d3r(g(r)- 1). (2) 

On the other hand, thermodynamic fluctuation theory relates number fluctuations to 
the isothermal compressibility X T  of the system (e.g. Egelstaff 1967, p 21): 

( M 2 > / ( M >  = kTpXT,  (3) 

where k is Boltzmann’s constant and T the absolute temperature. Combination of (2) 
and (3) gives 

s(0) = kTpxT, (4) 
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where the structure factor S ( K )  is given by 

S ( K )  = 1 + p  d3r e'"'(g(r)- 1). ( 5 )  5 
S ( K )  can be measured in scattering (neutron, x-ray or light) experiments where K is the 
scattering vector. If XT is known for the system, equation (4) can be used to check the 
K + 0 extrapolation of the data, since small-K (small-scattering-angle) measurements 
are notoriously prone to error. 

However, there does not appear to have been any direct experimental verification 
of equation (1). This is not surprising if the particles are atoms or molecules, since 
extremely small volumes would have to be probed to obtain a measurable fluctuation. 
(Nevertheless, recently developed techniques of laser-induced resonance ionisation 
have been used to detect number fluctuations of non-interacting atoms (Hurst er ai 
1977).) 

Here we report an experimental test of equation (1). The system studied was an 
aqueous dispersion of charged colloidal spheres of radius about 45 nm which interact 
through repulsive electrostatic forces over distances as large as 1 km, providing a 
'liquid-like' spatial arrangement of the particles. Both the static and dynamic (interac- 
ting Brownian motion) properties of these systems have been investigated over the past 
few years by laser light scattering (see e.g. Brown et a1 1975, Pusey 1979 for further 
references). Here we also use a light-scattering technique to probe the number 
fluctuations: a small volume V, 4 2  ~ m ) ~ ,  within the sample was defined by a highly 
focused laser beam and a small detection aperture. Under appropriate conditions 
(defined in 6 2) the detected intensity is simply proportional to M ( t ) ,  the instantaneous 
occupation number of V, which fluctuates as particles diffuse in and out of V. Thus 
processing the detector signal by standard photon-correlation techniques provides 
estimates of the temporal autocorrelation function ( M ( O ) M ( T ) > / ( M > ~  of the number 
fluctuations as well as its 

For repulsive interactions S(0)  < 1 (figure 1) so that, when compared with a 
non-interacting system ( S ( K )  = l), equations (2) and (5) predict, not surprisingly, 
reduced number fluctuations. Qualitative comparison of data obtained from an inter- 
acting system with that obtained from a system in which the electrostatic interactions 
are suppressed by residual electrolyte (see 9 3) shows a marked effect (figure 3).  
(Indeed, visual microscopic observation of the scattering volume showed distinctly less 
'graininess' in the image of the interacting system.) Quantitatively, if we define the 
right-hand side of equation (1) by 

= o value (M~>/ (M>*.  

then the values of (AM2)/ (M> = 0.218k 0-021, obtained from photon-correlation 
spectroscopy, and of S'(0) = 0.182 f 0.022, obtained by numerical integration of 
structure factor data (9 2, equation (26)), just agree within estimated experimental 
error. (Note that S'(0) + S(0) for large enough V.)  

In § 2.1 we outline the light-scattering theory in terms of the simple picture given 
above. In § 2.2 and the appendix a more complete theory is described which takes 
account of the fact that in the experiment the scattering volume is not uniformly 
illuminated and assumes instead a 'three-dimensional Gaussian' illumination profile. In 
§ 3 the experiment is described, and in § 4 the results are analysed. Finally in § 5 we 
discuss some implications and possible future developments of this type of experiment. 
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These include investigations of systems with attractive long-range forces, e.g. reversibly 
aggregating colloids, and the possibility of measuring higher-order analogues of g ( r ) ,  
e.g. four-body correlation functions. 

Colloid statistics is a time-honoured subject dating back to the work of Svedberg, 
Westgren and others in the early 1900s (see Chandrasekhar 1943 for a review). 
Light-scattering techniques were first applied to these studies in 1972 by Schaefer and 
Berne (see Pusey 1977 for a review, also Weissman et a1 1976, Webb 1976 for other 
applications). However, all these experiments involved non-interacting particles, and 
the present experiment seems to be the first to measure the effect of interactions on 
number fluctuations. Nevertheless, some aspects of the theory have been considered by 
Berne (1977), including a derivation of equation (26). 

2. Theory 

2.1. Uniform illumination profile 

The basic elements of the theory are most simply illustrated by assuming that the 
scattered light originates from a uniformly illuminated scattering volume V which is 
much smaller than the total sample volume VT. The treatment proceeds on similar lines 
to that already given for non-interacting particles (Schaefer and Berne 1972, Pusey 
1977). The complex amplitude of the scattered electric field can be written 

where N is the (large) number of particles in VT, r i ( t )  is the position of particle i at time 
t, K is the usual scattering vector, K = 1KI = (47r/A) sin(8/2), 8 being the scattering 
angle and A the wavelength of the light in the medium, and bi is a 'counting' variable: 

1 if ri is in V, 
0 otherwise. bi(t) = [ 

(Since the results will ultimately be normalised, we have set the constant of propor- 
tionality in (7) equal to one.) Then, since the intensity is I =  \El2, the mean intensity is 
given by 

Although bi is a function of ri, provided V"3 >> K-' it is a good approximation to regard 
bi and exp(iK. ri) as uncorrelated (e.g. Pusey 1977, p 137), so that 

i = l  j -1  

In the presence of particle interactions ri and ri are correlated. However, for large 
enough K (where S ( K )  = l), K. (ri -ri) can, for i Zj, be taken to be effectively 
uniformly distributed over intervals of 27r radians, so that only the i = j terms survive in 
(9). Since b: = bi (equation (8)), 

N 
( I ) =  (b i )=N(b) .  

i - 1  
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As before, we separate the phase and amplitude averages and assume large K. Then 
contributions arise only for i = j ,  k = 1, including i = j = k = 1 and i = 1 # j = k, so that the 
normalised intensity correlation function g‘2’( T )  is given by 

I f 1  

where (11) and (12) have been used. The first term in (136) is the number fluctuation 
term, and the second term arises from interference between the (coherent) fields 
scattered by different particles; Fs(K, T )  is the self-intermediate scattering function 

). I 14) 

If V’’3 >>IC’, Fs(K, T )  decays rapidly compared with the factor containing the b’s, so 
that the latter can be taken to have its zero-time value. Then 

iK. ( r ( O ) - r ( r ) )  FsW, 7) = (e 

a form which clearly shows how number fluctuations can be measured by dynamic light 
scattering. At this stage we have inserted a spatial coherence factor p ( ~ 1 )  which 
affects only the interference term and takes account of the finite size of the detector 
photocathode. It is convenient to define the number fluctuation part of (15a) by 

g%(7) E ( W ( o ) M ( T ) > / ( M ) 2 .  (156) 

Since Fs(K, 7) decays rapidly compared with g$A ( T ) ,  it is permissible to regard the 
intensity averaged over the (rapid) interference fluctuations as being simply propor- 
tional to the instantaneous occupation number M ( t )  (see 0 1). 

As an illustration of equation (15a) we consider its T = 0 limit for three situations 
(see Pusey er a1 1974): 

(i) If M is Poisson-distributed (non-interacting particles), (U2) = ( M ) ,  so that 

g‘2’(o) = 1 + l/(M) +p.  (16) 
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(ii) If M is constant (extreme repulsive interactions), 

g‘2’(o) = 1 +P(1- l/(M)). 

g y o )  = 1 + p. 
(iii) If (M) + 00, 

For coherent detection, /3 = 1, equation (18) gives g”’(0) = 2, corresponding to a light 
field having Gaussian statistics; in (16) the intensity fluctuations are enhanced above 
Gaussian by the particle number fluctuations; in (17) number fluctuations are absent 
and interference fluctuations are reduced (see 0 5 ) .  

In the case of arbitrary interactions we have, from (10) and (12), 

Now 

where g(r12) is, as before, the pair distribution function. Thus, for large N ( VT >> V), 
equations (lo), (19) and (20) give the result of equation (l), 

(”4 = S’(O), (21) 

g‘2’(o) = 1 +S’(O)/(M)+P(l +S’(O)/(M)- l/(M)). 

where S’(0) is defined by equation (6). We finally obtain, from (15a) and (21), 

(22) 

It should be emphasised that equations (1 l), (13b), (15a) and (22) are only valid for 
large K, i.e. for scattering angles much greater than the position of the main peak in the 
structure factor S(K),  where S ( K )  = 1. The more complicated situation, where this 
inequality does not hold, is discussed briefly in § 5 .  (Of course, the value of equation (9) 
for arbitrary K is, when normalised by its large-K value, simply the structure factor.) 

2.2. 3 0  Gaussian illumination profile 

Because of diffraction it is impossible to produce a small, uniformly illuminated 
scattering volume. An illumination profile which has the advantage of providing 
theoretically tractable results and approximating the experiment (see 0 4) is the 
‘three-dimensional Gaussian’ (Schaefer 1973, Berne 1977, Pusey 1977), for which (cf 
equation (7)) 

where ri is now measured from the centre of the scattering volume, and (+ is the radius at 
which the illuminating intensity falls to e-* of its maximum value (U<< Vi’’). The 
treatment is outlined in the appendix and, perhaps surprisingly, gives the same result as 
in 0 2.1 (equation (22)) if we take ( M )  = p V ,  where 

v = (TfTz)3’2 (24) 
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and 

S’(0)  = 1 + p  d3r e-r2’u2(g(r) - 1) (25) I 
(cf equation (6 ) ) .  Using the transform of equation (5) (e.g. Brown et a1 1975, equation 
(9)) gives 

S‘(0)  =z K2 d K  S(W, (26 ,  

whence S’(0) = S ( 0 )  for large (T (large V ) .  Equation (26)  was first derived by Berne 
(1977), who also determined the time dependence of the number fluctuations; then 
S ( K )  is replaced by F(K, T), the coherent intermediate scattering function for the 
interacting system. 

3 m  

2dT 0 

3. The experiment 

Samples were prepared from a 10% (volume fraction) aqueous dispersion of poly- 
styrene latex spheres supplied by the Dow Chemical Co. The nominal particle radius 
was 45 nm, and standard photon-correlation measurements gave a radius of 45 i 2 nm. 
A dilution by a factor of approximately 640, corresponding to a particle number density 
p ~ 4 . 0 9  x 10” ~ m - ~ ,  provided the two samples to be discussed here. The ‘interacting’ 
sample, A, was filtered through a 0.22 pm pore Millipore filter into a clean quartz cell of 
dimensions 0.1 cm x 1 cm x -4 cm which contained a few grains of mixed acid-base 
ion-exchange resin. The ‘non-interacting’ sample, B, was prepared without ion- 
exchange resin in a Pyrex cell of similar dimensions. The samples stood for several 
weeks to allow the ion-exchange resin to remove residual electrolyte from sample A, so 
that the range of the interaction became comparable with the interparticle spacing. 

Measurements of the time-averaged light-scattering intensity ( I ( K ) )  as a function of 
scattering’angle 8 were made with equipment described previously (Brown er a1 1975, 
Pusey 1978) using a large scattering volume. Figure 1 shows the data, corrected only for 

. .  . . - * . .  . *  
e .  

- .  ‘ . .  * . . ‘ I  

L 
0 1 2 4 X l O 5  

Scattering vector K (cm-’I 
Figure 1. Time-averaged intensity (corrected for sin t9 dependence of scattering volume) as 
function of scattering vector K for ‘interacting’ sample A (full points) and ‘non-interacting’ 
sample B (crosses). 
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the sin 6 dependence of the scattering volume, as a function of the scattering vector K. 
Sample A shows the usual ‘liquid-like’ structure factor, implying considerable short- 
range ordering of the particles under the influence of the Coulombic interaction. 
Sample B, however, shows no obvious structure owing, presumably, to the shielding of 
the particle charges by the electrolyte both initially present and leached from the Pyrex 
cell walls. The slight fall-off in intensity for K 3 0.5 x 10’ cm-’ is caused by intraparti- 
cle interference. At large enough K the interactions are unimportant, S ( K )  + 1, and 
the ratio 1.47* 0.03, of the intensities scattered by samples A and B can be taken as a 
measure of their relative concentrations. This difference, for samples of nominally the 
same concentration, is probably caused by dilution errors and possible partial retention 
of the latex by the filters. At small angles, 6 6  15”, particulate contaminants of 
undetermined origin cause increased scatter in the data (figure 1) (see also Brown et a1 
1975, Pusey 1978). Occasionally the scattering volume was free of such contaminants 
and ‘good’ data were obtained for a few seconds. The full curve in figure 1 is a guessed 
‘best fit’ which attempts to take account of this distortion. Extrapolation to K = 0 for 
sample B gave (IB(0)) = 44.5 f 1.5 so that, in the absence of interactions, (IA(0)) would 
be 44.5 x 1.47 = 65.4 f 2.6. This value can then be used to normalise the intensity data 
for sample A to obtain S(K) .  In particular, since (IA(0))=9.5*l-0, SA(O)= 
0.145*0*016. 

sample 
M i  U2 , /  v 

Laser . - .  
0 

-Aperture (250 p m )  

Photomultiplier 

Figure 2. Layout of the optics (Ml,  M2 and M3 are microscope objectives). 

Figure 2 shows the apparatus used to measure number fluctuations. The laser was a 
Spectra Physics Model 120 which, after attenuation by a factor 10, gave a power of 
about 0-8 m W  at wavelength 633 nm in uacuo. The first microscope objective M1 
( ~ 1 0 ,  numerical aperture (NA) 0.25) expanded the beam so that the second objective 
M2 ( x 10, NA = 0-25) was filled with more or less uniform illumination. This combina- 
tion should give a focal spot diameter of order 1.22X/2 x NA = 1.5 km. The sample cell 
was placed with its short dimension parallel to the beam. Using microscope objective 
M3 (NA = 0.28) a magnified image (about X20) of the focal volume was cast on a vertical 
slit of width 10 p,m. Because of diffraction this arrangement will collect light from a 
region of length about 1.5 pm parallel to the beam. The slit was mounted on the front 
of the housing of an I’IT F W  130 photomultiplier tube (PMT) whose photocathode 
(effective diameter 0.025 cm) was about 10 cm behind the slit. The PMT housing was 
itself mounted on an X-Y-2 micrometer positioning device, thus allowing the slit to be 
placed precisely in the centre of the image of the focal region of the laser beam to 
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provide the smallest scattering volume. The scattering angle was 90°, corresponding to 
a scattering vector K = 1.87 x lo5 cm-'. This is well above the structure in S ( K )  for 
sample A (figure l ) ,  so that the theory of 0 2 applies. 

The sample (along with objectives M2 and M3) was covered by a box to minimise air 
currents and consequent convection. Observation of the illuminated scattering volume 
with a microscope immediately after insertion of the sample showed residual coopera- 
tive streaming motions. However, after standing for an hour or two before making 
measurements, no convection or cooperative motion was evident. Room temperature 
remained in the range 22 ~t 1 "C. 

The photomultiplier tube was operated in the photon-counting mode. The dark 
count was less than lo's-', which is negligible compared with the typical counting rates 
of lo4 s-'. Photon-correlation functions were constructed by a 'one-bit' 96-channel 
Malvern Instruments correlator, the duration of an experiment being typically lo3 s. 
The correlator was used in the single-scaled mode to provide experimental estimates of 
the normalised intensity correlation function g"'(7) (equation (13b)) (see Cummins and 
Pike 1974, 1977, for articles on the theory and practice of photon correlation). 

Fine alignment of the Slit-pMT combination was accomplished by adjusting its 
position until the number-fluctuation term in g'*'(O) attained its highest value (implying 
smallest ( M )  and V ) .  Adjustment tolerance was found to be about 0.2 cm parallel to 
the scattering direction (i.e. in and out of focus) and about 50 p,m perpendicular to this 
direction (i.e. along the incident beam). Taking account of the X20 magnification of the 
imaging system, this latter figure implies a tolerance of about 2.5 ym in the sample. 

4. Data and analysis 

Figure 3 shows the results of several measurements on both samples A (lower trace) and 
B (upper trace). Note that a wide range of times is spanned. Both samples show a rapid 
initial decay, virtually complete in 2 ms, owing to the interference fluctuations. The 
slower decays, extending to 1 s, reflect number fluctuations. The qualitative effect of 
the particle interactions is immediately obvious: although sample A is only slightly 
more concentrated than B, the amplitude of the number-fluctuation term is greatly 
reduced. 

These amplitudes were determined by extrapolation to 7 = 0 after subtracting the 
interference contributions, measured in a separate large-scattering-volume experiment 
(where number fluctuations are negligible). The actual values, 0.037 * 0.002 for 
sample A and 0.25 * 0.02 for sample B, are indicated in figure 3(b). For the non- 
interacting sample B, g ( r )  = S(0)  = S'(0) = 1, so that, from equation (22.), (MB)-' = 
0-25 f 0.02 and (MB) = 4.00 f 0.32. For sample A, by use of the concentration ratio 

The optical arrangement used in this experiment ( 0  3) obviously does not provide 
the 3D Gaussian scattering volume assumed in 0 2.2. Nevertheless, diffraction prob- 
ably causes the illumination to decrease as 1 - ar' + . . . (where r is the distance from the 
centre of the scattering volume, and cr is a constant), a feature it shares with the 3D 
Gaussian volume. Thus, for want of a better approach, we will assume that the 
treatment of 0 2.2 applies. The validity of this assumption can be checked by the time 
dependence of the number fluctuations: for non-interacting particles in a 3D Gaussian 
volume, gEk(T), the number-fluctuation part of g"' (equation (15b)), is given by (Pusey 

1.47 (0 3), (MA) = 5.88 f 0.48. 
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I C 1  

Correlation delay time T ( s )  

Figure 3. Composite correlation functions for sample A (lower traces) and sample B (upper 
traces). Note changingvertical and horizontal scales and wide range of delay times spanned. 
Arrows in ( a )  indicate zero-time intercepts g"'(0) of full correlation functions ( 8  5 and table 
1). Arrows in ( b )  indicate zero-time intercepts &&O) of number-fluctuation parts of 
correlation functions. The full curve in ( b )  and (c) is a fit of the number-fluctuation term for 
sample B to the theoretical expression, equation (27). 

1977, equation (4.29)) 

g E k ( 7 )  = (M)-l(l +4DT/u2)-3'2, 

where D is the particle diffusion coefficient, and U the radius of V (§ 2.2). The full curve 
in figures 3(b) and 3(c) is (27) with (M) = 4, D = 5.025 x lo-' cm2 s-l (the expected 
value at 22 "C) and u = 1.1 pm (chosen to give a 'good fit' as judged by eye). Thus 
equation (27) provides a good description of the data except in the tail of the correlation 
function. This value of u is not too different from the rough estimate, 0.75 pm, given in 
§ 3. 

Using the structure-factor data taken from the full curve of figure 1, and taking 
u = 1.1 k0.05 pm, we obtain, by numerical integration (with step d K  = 2 x lo3 cm-') 
of equation (26), S'(0) = 0-182* 0,022. As mentioned in 3 1, this compares favourably 
with(AM~)/(MA)=0.218*0.021, obtainedfromg~~(O)=O.037*0.002 and (MA)= 
5.88*0.48 (see above). Note that S'(O)/S(O) = 1.26 (§ 3), so that, for the small 
scattering volume used in this experiment, the approximation leading to equation (2) 
(which is frequently quoted without qualification) is in error by more than 25%. Values 
of various measured and derived quantities are collected in table 1. 

Finally, we can check the internal consistency of the data by comparing the particle 
number densities for sample A determined in three different ways: (i) from.the dilution 
factor (3 3); (ii) from the intercept of the number fluctuation term (above); (iii) from the 
position Kmax of the main peak in S(K). In this last method we use the results of 
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Table 1. Summary of numerical results (see text for further explanation) 

Quantity Sample A Sample B 

i= (AM2) l (M)*)  0.037rt0.002 0.25f0.02 
5.88 * 0.48 4.00rt0.32 

(= (M)g%OH 0.218 f 0.021 
(from measured S ( K ) )  0.182i0.022 

(from magnitude of interference 0.142*0.169 

(nominal, from dilution factor) 3.03 

1.775 rtO.010 2.1 14kO41' 

fluctuations) 

(from peak in S i K ) )  4.07 i0.59 

t For (non-interacting) sample B, (MB)  = (gf&(O))-'; for sample A, (MA)  is obtained from 
(MB)  and the concentration ratio (see S 3). 

previous measurements (Brown et a1 1975) which showed that, for ordered colloidal 
samples of the type used here, 

Kmaxrmax/277 = 1.18*0-02, 128) 

where r,,, is the position of the main peak in g(r). We then use the result for the 
'packing fraction' f ,  

f =  rpriax/6, (291 

to obtain p. Previous measurements gave f = 0.50f0.02, although for 'random close 
packing', characteristic of atomic liquids, one expects f = 0.64 (e.g. Bernal and King 
1968). Here we take f=0.57*0.07 which, combined with IS,,,,,= 
0 5 9 f  0.01 x lo5 cm-' (figure 1) in (28) and (29), gives p = 5.49 f 0.68 x 10" ~ m - ~ .  We 
take V = 7.41 f 0.58 *m3 (obtained from (24) with U = 1.10 rt 0.05 pm) to give (MA) = 
4.07 * 0-59. The three values of (MA) are listed in table 1.  

The low value of the nominal concentration is not serious, since the dilution factor 
could be in error by as much as 100%. However, the difference between the results of 
methods (ii) and (iii) is significant, and we mention two possible explanations. Firstly, as 
mentioned above, the scattering volume is not exactly 3D Gaussian as was assumed 
when calculating V. For example, if we take U = 1.2 pm, which would give a better fit in 
the tail of the correlation function (figure 3(b) ) ,  we obtain (Ma) = 5.28 f 0.74 by 
method (iii). Secondly, the detection of any 'stray signal' (e.g. dark count, parasitic 
scattering by the cell walls, multiply scattered light arising from outside the primary 
scattering volume) will cause a reduction in gCi(0) and a consequent overestimate of 
(MA) by method (ii). For example, 10% stray signal will cause a 21% reduction in 
gCi.0). Note, however, that both these possibilities should have much the same relative 
effect on the values of gCk-0) for samples A and B. Thus (hMi)/(MA), the quantity of 
interest in this experiment, should be largely unaffected, since it is determined from the 
ratio of the gg i (0 )  values. 

5. Discussion 

The experiment described above provides what appears to be the first experimental 
verification of equation (l), which relates number fluctuations of interacting particles to 
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their radial distribution function. It seems likely that future experimental refinements 
could significantly reduce the error, at present about lo%, in the measurement of both 
(AM2)/(M) and S’(O), thus providing a more stringent test. 

Such tests of fundamental relationships are obviously important in their own right. 
On the other hand, if such relationships are taken as proven, experiments of the type 
described here can be used to provide information about the systems not easily obtained 
by other means. For example, consider equation (3): for a colloidal dispersion XT is the 
‘osmotic compressibility’ 

where r is the osmotic pressure of the particle system. Thus a measurement by light 
scattering of the number fluctuations (AM2) / (M)  can provide an estimate of xT. As the 
dispersion is diluted, measurement of number fluctuations becomes easier (because the 
relative fluctuations are larger), whereas measurement of osmotic pressure or S(0)  by 
conventional means becomes more difficult. Number-fluctuation data obtained over a 
range of concentrations could then be integrated numerically to provide the osmotic 
pressures of extremely dilute dispersions of interacting particles. Such measurements 
could also be made on systems with significant attractive parts to the interparticle 
potential. An example is charged particles at higher ionic strengths than those 
considered here, where reversible aggregation can occur in the secondary minimum of 
the potential which arises from non-negligible dispersion (or van der Waals) forces (e.g. 
Long et a1 1973). Here number fluctuations would be greater than for non-interacting 
particles. 

Another extension of the experiment could provide correlation functions of higher 
order than the pair distribution function g(r12). Consider equation (13a). By taking the 
scattering vector K to be much larger than the position K,, of the main peak in S ( K ) ,  it 
was possible to separate the exponential into two terms as indicated in 0 2. However, 
for K s Km, such a treatment is not possible, and the measured value of g‘”(0) will 
depend on the fourth-order distribution function g4(rI2, r23,  r34). (Note that the term 
containing g4 will only be important if V”3 is not much larger than the range of the 
interparticle interaction (e.g. Pusey 1977, p 121).) It should also be possible to 
cross-correlate the outputs of two or more detectors placed at different angles cor- 
responding to scattering vectors K 1 ,  &, . . . < &,=. Although higher-order correlation 
functions are harder to visualise than the pair functions and are difficult to obtain from 
experiment, they play an important role in the theory of liquids. An experiment of the 
type outlined above could be used, for example, to check the validity of the super- 
position approximation in which higher-order correlation functions are written in terms 
of products of the pair functions (e.g. Egelstaff 1967). 

We conclude with two further comments: 
(i) By using higher-power lenses it should be possible to obtain even smaller 

scattering volumes V than those used here. In fact, the trial use of objectives of 
numerical aperture 0.45 (instead of 0.25) did not provide a smaller V because of 
significant spherical aberrations caused by the plane air-glass and glass-water inter- 
faces. However, special aberration-corrected lenses would circumvent this problem. It 
should be realised, however, that, because of diffraction, smaller scattering volumes will 
come at the expense of increased spread in scattering angle (and in scattering vector). In 
addition, experiments which involve varying the scattering angles of several detectors 
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will become difficult simply because of the physical bulk of lenses of high numerical 
aperture. 

(ii) It can be seen from equation (22) that repulsive interactions (S’(0) < 11, in 
addition to causing a reduction in the number fluctuations, also reduce the amplitude of 
the interference fluctuation term (the last term in (22)). Thus a measurement of this 
amplitude provides, in principle, an independent estimate of S’(0). The experimental 
values of g”’(0) were found by extrapolation of several measurements with correlation 
sample times of 1 or 2 ps and are indicated in figure 3(a). For sample B, g‘”(0) = 
2.114*0.015, so that, from (16) with g%(0)=0.25 (table l), we obtain 

(31) p = 0.864 * 0.025. 

For sample A, g‘2’(0) = 1.775 *0.010; from (22), with gCk(0) = 0.037, we obtain 

p[1- (1 - S’(O))/(MA)] = 0.738 * 0.01, 

which, taking (MA) = 5.88 (table 1) and p from (31), gives 

S’(0) = 0*142*0*169. 

This value of S’(0) is consistent with those determined by other means (table l), but the 
error is much larger. Finally, we note that this is not far from the extreme case, 
considered in equation (17), of a smallfixed number of scatterers giving rise to a light 
field showing ‘less-than-Gaussian’ fluctuations. This situation was discussed some 
years ago by Pusey er a1 (1974), but has (at least in light scattering) remained a 
theoretical curiosity until now. 

Appendix. Light scattering with 3D Gaussian illumination profile 

In this case the average intensity and intensity correlation function are given by 
equations (9) and (13a), with 

bi(t) = e - r f ( t ) / f 1 2  (A1 1 

where ri and CT are defined in § 2.2. By the same arguments as those leading to (1 1) and 
(15) we obtain, for K >>K,,,, 

(A21 2 r 2 / v 2  (0 = N(e- )v, 

and 
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Thus, for V;I3 >>U, 

By transforming to sum and difference coordinates in (A5) and assuming N >> 1, we 
obtain 

2 3/2 
TU2 3 

+ ( l + p ) $ [ ( r )  +(?) d3ree-"/".(g(r)-1)]. (A7) 

Normalisation of (A7) using (A6) gives 

If we now take the scattering volume V to be 

v = (7ru2)3'2, ( A 9  
so that the mean occupation number (M) is 

( M )  = NV/ VT, 

then 

g'2'(o) = 1 +S'(O)/(M)+/3(1 +S'(O)/(M)- l/(M)), (-410) 
where 

which are the results quoted in 9 2.2. Finally, we note that, using (A6) and the definition 
of V given by (A9), we obtain 

(I) = ( ~ ) / 2 ~ / ~ ,  

not simply (I) = (M) as one might naively expect. 
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